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SUMMARY

Quantum effects play an important role in determining the double-gate (DG) MOSFETs characteristics.
The non-equilibrium Green’s function formalism (NEGF) in real-space (RS) representation provides a
rigorous description of quantum transport in nanoscale devices. Unfortunately, the traditional NEGF
framework has the disadvantage of being heavy in computations. Methods that reduce the computations
exist in the literature like the recursive Green’s Function (RGF) algorithm, the contact block reduction
(CBR) method, and Gauss elimination (GE) method. Comparison of the simulation time of the traditional
NEGF, the RGF algorithm, the CBR method, and the GE method was always theoretical and based on
approximate estimates. In this work, we carry out a real comparison between the four methods by
implementing them inside the same simulator, using them to simulate the same device dimensions and
parameters on the same machine. It is demonstrated that the RGF algorithm or the GE method introduce
about one order of magnitude reduction in simulation time below that traditional NEGF, whereas the
CBR method yields the smallest simulation time with about two orders of magnitude reduction. Copyright
r 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Rapid device scaling pushes the dimensions of the field-effect transistors to the nanometer
regime [1]. The International Technology Roadmap for Semiconductors projection for the
double-gate (DG) MOSFETs physical gate length is 4.5 nm for the year 2022. For these
extremely scaled dimensions, quantum effects play an important role in determining the DG
MOSFETs characteristics. These effects can be accurately predicted only using quantum
mechanical-based device simulation [2].

The non-equilibrium Green’s function formalism (NEGF) provides a rigorous description of
quantum transport in nanoscale devices [3]. Device simulation based on NEGF is carried out
using the so-called self-consistent solution method shown in Figure 1. The method is composed
of two main blocks, Poisson’s equation solver and the quantum transport solver, which is based
on the NEGF formalism. Poisson’s equation gives the electrostatic potential distribution (V) in
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the device for a given electron density (n) and hole density (p). The NEGF solver gives the n and
p density and the electrical current (I) for a given potential V. The self-consistent method starts
by assuming initial value for the potential, which is fed to the NEGF solver, to calculate the n
and p densities. The calculated densities are fed to Poisson’s solver to find the updated potential
Vnew in the device. We go forth and back between Poisson’s solver and NEGF solver until the
update in the potential drops below certain tolerance and then terminal currents are calculated.

Computational efficiency is needed to make the self-consistent method suitable for device
design and characteristic prediction. Unfortunately, the NEGF method has the disadvantage of
being heavy in computations [4]. Green’s function is calculated by means of matrix inversion for
the Hamiltonian matrix. This makes the NEGF formalism not suitable for 3D or even 2D devices.
Therefore, several methods have been proposed to reduce the computational burden of the
NEGF. Some of these methods sacrifice with the accuracy of the simulation by using the
uncoupled-mode-space (UMS) representation [4, 5]. Other methods that reduce the computations
in the real-space (RS) representation also exist like the recursive Green’s Function (RGF)
algorithm [6–8], the contact block reduction (CBR) method [9,10], and Gauss elimination (GE)
method [11]. The RS representation has the advantage of being able to accurately: (1) predict the
electrical characteristics of DG MOSFETs whether the Si body is ultra-thin or not [12], (2)
simulate electronic devices with arbitrary-oriented wafer orientation [13], (3) account for non-
coherent scattering, and (4) calculate the gate leakage current self-consistently [14].

Comparison of the simulation time of the traditional NEGF, the RGF algorithm, the CBR
method, and the GE method was always theoretical and based on approximate estimates. In this
work, we carry out a real comparison between the four methods by implementing them inside
the same simulator, using them to simulate the same device dimensions and parameters on the
same machine. The FETMOSS simulator has been chosen for this comparison [15]. It is a 2D
simulator for nanoscale DG n-MOSFETs based on the UMS representation. In this work, the
aforementioned RS methods will be implemented in FETMOSS and compared. The rest of this
article is organized as follows. In Section 2, simulation of DG MOSFETs using the traditional
NEGF is presented. Section 3 discuses the various computationally efficient methods used to
reduce the traditional NEGF computational burden and their application to DG MOSFETs.
These methods were implemented in the FETMOSS simulator and the results are given in
Section 4. First, the new version of FETMOSS is benchmarked using a well-known simulator
available online, then the simulation time of the four methods (the traditional NEGF, the RGF
algorithm, the CBR method, and the GE method) is compared.

 NEGF 
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newVpn →,

No 
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<oldnew VV
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Figure 1. Flow chart illustrating the self-consistent method used in device simulation using the NEGF.
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2. DG MOSFETS SIMULATION USING THE TRADITIONAL NEGF

The DG MOSFET model device geometry is shown in Figure 2. The following assumptions are
usually made in the nanoscale DG MOSFETs simulation:

(1) The channel length in x-direction is shorter than any characteristic scattering length such
that the device is operating in the ballistic limit.

(2) The width of the device in the z-direction is so large compared with other dimensions of
the active device such that the potential along that direction is rendered constant.

(3) The metal contacts are so large such that the thermal equilibrium is maintained, and the
Fermi level in these regions is determined by the applied voltage.

(4) N-channel transistor where holes contribution, to both the transport and the
electrostatic problems, can be neglected.

(5) No electron penetration in the insulator region.
(6) A single-band effective mass Hamiltonian [16] is used to model the electron transport.

The 2D wave function c(x,y) is obtained from the solution of the 2D Schrödinger equation:
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where m�x and m�y are electron effective mass in x- and y-direction, respectively, EC is the
conduction band edge and El is the longitudinal energy due to motion in x- and y- direction.
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Figure 2. A model double-gate MOSFET used in this work.
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Figure 3. Two-dimensional simulation grid.
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On discretization of Equation (1) using the grid shown in Figure 3, a set of linear equations is
obtained and can be cast in the matrix form:

½H l�fwg1½EC�fwg ¼ ½ElI �fwg ð2Þ

where
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The retarded Green’s function of the active device is given by:

G ¼ ElI �H �
X

S

�
X

D

" #�1
ð3Þ

where H ¼H l1EC;
P

S and
P

D are the source and drain contact self energy given by [12]:
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where gS and gD are the surface Green’s functions of the source and drain contacts respec-
tively [17].

The broadening functions, CS and CD are calculated using:
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ð5Þ

The retarded Green’s function G is obtained using Equation (3) and the spectral functions filled
by the source/drain contacts can be afterwards obtained as:

AS ¼ GCSG
1 ð6Þ

AD ¼ GCDG
1 ð7Þ

The correlation function is then calculated by:

GnðElÞ ¼ ASðEÞF ðEl;EfS Þ1ADðEÞF ðEl;EfD Þ ð8Þ

where EfS and EfD are the Fermi levels of the source and drain contacts, respectively, and the
function F is given by:

F ðE;Ef Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�zkBT

p�h2

s
=�1=2

Ef � E
kBT

� �
ð9Þ

and =�1=2 is the Fermi-Dirac integral of order �1/2.
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The longitudinal-energy-resolved electron density at a grid point i is obtained by:

nði;ElÞ ¼ Gnði; i;ElÞ
2pDxDy

ð10Þ

The longitudinal-energy-resolved electron density n(i,El) is, further, summed over the Si six
conduction band valleys and, finally, the total electron density n(i) is obtained by integration
over the longitudinal energy.

The transmission coefficient from the source contact to the drain contact is defined in terms
of Green’s function and the broadening function as:

TSD ¼ Trace CSGCDG
1

� �
ð11Þ

The longitudinal-energy-resolved terminal current in the ballistic limit is, afterwards,
obtained as:

IðElÞ ¼
q
2p�h

TSD½F ðEl;EfS Þ � F ðEl;EfD Þ� ð12Þ

The terminal current is, further, summed over the six conduction band valleys and, finally,
integrated over the longitudinal energy.

3. COMPUTATIONALLY EFFICIENT METHODS

The retarded Green’s function is a central quantity in the NEGF. As seen from Equation (3), it is
calculated by means of matrix inversion for the effective Hamiltonian matrix. The effective
Hamiltonian matrix size is the same as the number of points in the grid which is Ngrid 5NxNy for
2D device. Numerical matrix inversion consumes a large number of operations that in the order
of N3

grid. Moreover, Green’s function should be calculated for each energy point considered in the
simulation. This makes total number of operations scales as Nop ¼ NEN3

grid where NE is the
number of energy points. Therefore, efforts have been exerted to develop computationally
efficient methods to reduce the computational burden. In this work, three methods are
considered: the RGF algorithm [6–8], the CBR method [9,10], and GE method [11].

3.1. The RGF algorithm

The RGF algorithm builds up the Green’s function recursively without full inversion of the
Hamiltonian matrix [8]. It can be used only if the effective Hamiltonian matrix ½EI �H � R� is
block tri-diagonal. This means it allows only the nearest neighbor layers coupling in RS.
Unfortunately, a lead couples all the layers connected to it [9] and, therefore, the RGF works
when the device has no more than two contacts. The RGF algorithm is summarized in the
following steps [8]:

Let D ¼ ½ElI �Hd � �S � �D� and Dn;m denotes D½ðn� 1ÞNy : nNy ; ðm� 1ÞNy : mNy �, then
carry out the following steps for G:

(1) gL1
1;1 ¼ D�11;1.

(2) For q5 1,2,y,Nx�1, compute g
Lq11
q11;q11 ¼ ðDq11;q111Dq11;qg

Lq
q;qDq;q11Þ

�1.

(3) For q5 1,2,y,Nx�1, compute g1Lq
q;q .

(4) GNx;Nx ¼ gLNx
Nx;Nx

.

(5) For q5Nx-1, Nx-2,y,1, compute Gq;q11 ¼ �gLq
q;qDq;q11Gq11;q11; Gq11;q ¼ �Gq11;q11

Dq11;qg
Lq
q;q and Gq;q ¼ gLq

q;q � g
Lq

q;qDq;q11Gq11;q in this order.

(6) For q5 1,2,y,Nx�1, compute G1
q;q11 and G1

q11;q.

Let RinðElÞ ¼ CSðElÞF ðEl;EfS Þ1CDðElÞF ðEl;EfD Þ, then carry out the following steps for Gn:

(1) gnL1
11 ¼ gL1

11�
in
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11 .
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.
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(4) For q5Nx-1, Nx-2,y,1, compute Gn
q;q ¼ gnLq

q;q 1gLq
q;qðDq;q11G

n
q11;q11D

1
q11;qÞg

1Lq
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nLq
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1
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(5) Use Gn
q;q11 ¼ G1n

q11;q.

Then longitudinal-energy-resolved electron density at a grid point i is obtained from the
diagonal elements of the correlation function as given by Equation (9) and the longitudinal-
energy-resolved terminal current is obtained as:

I ¼
q
2p�h

Tracef½½G1
1;1ðEÞ � G1;1ðEÞ�F ðEl;EfsÞ � iGn

1;1ðEÞ�½bðgS � g1
S Þb�g ð13Þ

The operation count of this algorithm scales approximately as N3
y Nx[8]. The dependence on N3

y
arises because matrices of the sub Hamiltonian of the device vertical layers should be inverted,
and the dependence on Nx corresponds to one such inversion for each of the layers. These
operations are carried out for each energy step and, therefore, the total number of operations is
estimated as Nop ¼ NEN3

y Nx.

3.2. The CBR method

There are three key points in the CBR method that makes it computationally efficient relative to
the traditional NEGF [9]: (1) Dyson’s equation is used together with a clever splitting of the
simulation domain that makes the elements of Green’s function can be calculated with inversion
of a relatively small matrix, (2) the isolated device eigenstates are used as a basis for the
transport problem, and the number of eigenstates needed to maintain acceptable accuracy is
greatly reduced by applying von Neumann boundary condition for the isolated device
Hamiltonian, and (3) the use of the leads propagating modes as a basis instead of the RS basis in
single-band case where only propagating modes contribute to the current.

Greens’ function of the isolated device G0 is given by its spectral representation [3]:

G0ði; j;EÞ ¼
XNeigen

a¼1

waðiÞw
�
aðjÞ

E � ea1iZ
; Z! 0 ð14Þ

where wa are the eigenfunctions of the isolated device, ea are the corresponding eigenenergies, i
and j are the grid point’s indices in RS. The simulation domain is spitted into two sub-domains,
D: the interior part of the device and C: the boundary region that connects the interior parts to
the contacts. Accordingly, the isolated device Hamiltonian matrix can be written as [9]:

H0 ¼ H0
C H0

CD

H0
DC H0

D

� �
Ngrid�Ngrid

ð15Þ

where H0
CNC�NC

is a relatively small matrix corresponds to NC boundary points (2Ny in our case)
and H 0

DND�ND
is a huge matrix corresponds to the ND interior points (NxNy�2Ny in our case.)

Finally, Green’s function of the coupled device is obtained:

G ¼
X�1C G0

C X�1C G0
CD

G0
DC�CX�1C G0

C þ G0
DC �G0

DCRCX
�1
C G0

CD þ G0
D

" #
¼

GC GCD

GDC GD

� �
ð16Þ

where XC ¼ ½IG
0
CRC�NC�NC

is a small matrix and RC is the self-energy matrix in the contact region.
The transmission function given by [9]:

T ¼ Trace½CS
CGCCD

CG
1
C � ð17Þ

The spectral function filled by the source/drain contacts, AS;D is given by [9]:

AS;Dði; j;EÞ ¼
X
a;b

caðiÞc
�
bðjÞ

Traceðcbc
1
a B
�1
C GS;D

C ðB
�1
C Þ

1Þ

ðE � ea1iZÞðE � eb1iZÞ
; Z! 0 ð18Þ

where BC ¼ I � RCG
0
C.

The aforementioned splitting of the simulation domain and the application Von
Neumann boundary condition requires the modification of the Hamiltonian matrix given in
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Equation (2) to:

Hl ¼
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And the corresponding self-energy matrix is given by:

X
¼

P
S 0

0
P

D

� �
NC�NC

0

0 0

2
4

3
5

Ngrid�Ngrid

ð20Þ

where RS ¼ bgSb� b and RD ¼ bgDb� b.
The double summation on the eigenstates in Equation (18) is composed of two terms, the first

one is energy independent but position dependent and the second one is the opposite. Therefore,
the number of operations can be estimated as Nop ¼ N 2

eigenNE1N 2
eigenNgrid[9] where Neigen is the

number of eigenstates to be used. The Numerical calculation effort of the transmission function
and the spectral function can be further reduced in the single-band case by transforming Green’s
function and the self-energy into a basis of the leads mode-space [9]. The idea behind choosing
these modes as a basis is that if the potential is constant inside a given lead, then its modes are
truly uncoupled which results in diagonal self-energy matrices. Besides diagonal self-energy
matrices, only few modes contribute to the transmission at a given energy [9]. Therefore, the
number of operations can be estimated as Nop 5NENeigenNmodesNgrid [10] in which higher orders
of Ngrid or Neigen are absent.

3.3. The GE Method

The idea in this method is based on the sparse nature of the broadening function which can be
seen from Equations (4) and (5). Consequently, the entire Green’s function isn’t needed to
calculate the spectral functions in Equations (6) and (7). Instead, the spectral functions are
calculated using the following equations [11]:

AS ¼ GS ½bðgs � g1
S Þb�G

1
S ð21Þ

AD ¼ GD½bðgD � g1
D Þb�G

1
D ð22Þ

where GS and GD are submatrices of the retarded Green’s function and are given by:

GS ¼
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..
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GD ¼
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The matrices in Equations (23) and (24) can be obtained using GE method by the following
equations:

GS ¼ ½ElI �Hd � RS � RD� \ IS ð25Þ

GD ¼ ½ElI �Hd � RS � RD� \ ID ð26Þ

where the A\B denotes division of the B by A using GE method, IS and ID are given by:

IS ¼
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0 1 . .
. ..
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. . .
. . .

.
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. . .
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ð27Þ
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ð28Þ

The transmission function can also be efficiently calculated efficiently using the following
equation [11]:

TSD ¼ Trace½ðbðgs � g1
S Þb�GDS½bðgD � g1

D Þb�G
1
DSÞ ð29Þ

where GDS is a subset of GD and given by:

GDS ¼

Gð1; ðNx � 1ÞNy11Þ Gð1; ðNx � 1ÞNy12Þ � � � Gð1;NyÞ

Gð2; ðNx � 1ÞNy11Þ Gð2; ðNx � 1ÞNy12Þ � � � Gð2;NyÞ

..

. ..
.
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.
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2
66664

3
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Ny�Ny

ð30Þ

Using Equations (24) and (25), we calculate only NxNy� 2Ny elements of Green’s function
instead of calculating NxNy�NxNy elements.

4. RESULTS AND DISCUSSION

The new version of FETMOSS using the RS methods discussed in Section 3 has been
benchmarked using an online available simulator NanoMOS 3.0 [4] on nanohub: www.nano-
hub.org. NanoMOS3.0 is a 2D simulator for DG n-MOSFETs that uses the UMS
representation for quantum ballistic transport simulation. The use of the UMS representation
limits the simulator capability to thin bodies DG MOSFETs (less than 5 nm). It is expected to
find well agreement between UMS NEGF in NanoMOS and RS NEGF in FETMOSS, for
ultra-thin body thickness where the UMS is valid. A sample nanoscale DG MOSFET has been
simulated using NanoMOS 3.0 and FETMOSS. The simulated device dimensions, doping
concentrations, material parameters, simulator options, the finite difference grid spacing, and
the supply voltage are given in Table I. The simulation results are shown in Figures 4 and 5
where good agreement between the two simulators can be observed.

Now, we have the three methods discussed in Section 3 implemented and integrated into
FETMOSS. It is the time to compare their computational efficiency relative to the traditional
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Table I. The simulated devices dimensions, doping concentration, material parameters, simulator options,
the finite difference grid spacing, and the supply voltage.

Category Parameter Value

Dimensions Channel length (L) 5 nm
Source and drain length (LS, LD) 5 nm
Oxide thickness (Tox) 1 nm
Silicon (body) thickness (TSi) 2 nm

Doping Channel doping 1010 cm�3

Source and drain doping 2� 1020 cm�3

Junction doping profile step
Material Silicon relative permittivity (eSi) 11.7 e0

Oxide relative permittivity (eox) 3.9 e0
Top and bottom gate work function (jm) 4.5 eV
Longitudinal electron effective mass m�l 0.91 m0

Transverse electron effective mass m�t 0.19 m0

Self-consistence tolerance (d) 10�3 V
Poisson’s tolerance 10�6 V

Grid Vertical node spacing 0.1 nm
Horizontal node spacing 0.2 nm

Supply voltage VDD 0.7V
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Figure 4. The IDS-VGS characteristics of the simulated device at VDS 5 25mV. The left axis is the log scale
while the right axis is the linear scale.
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Figure 5. The IDS-VGS characteristics of the simulated device at VDS 5 0.7V. The left axis is the log scale,
whereas the right axis is the linear scale.

Y. M. SABRY, T. M. ABDOLKADER AND W. F. FAROUK330

Copyright r 2010 John Wiley & Sons, Ltd. Int. J. Numer. Model. 2011; 24:322–334

DOI: 10.1002/jnm



NEGF. For this purpose, the four methods (the traditional NEGF, the RGF algorithm, the
CBR method, and the GE method) were used to simulate the device given in Table I. The drain
voltage was kept constant at 0.7V and the gate voltage was swept from 0.0 to 0.7 V with a step
of 0.1V. Thus, we have eight bias points. For the first bias point, i.e. VGS 5 0.0V, the initial
guess was taken to be the zero potential at various grid points in the device. The initial guess for
any other bias point was taken from the solution of the preceding bias point, for example initial
guess for VGS 5 0.1V was taken from the solution of VGS 5 0.0V. It is important to mention
that the traditional NEGF, the RGF algorithm, and the GE method are all giving exactly the
same current for the same applied voltage. This is because neither the RGF algorithm nor the
GE methods trades off the accuracy with the simulation speed, whereas the CBR method does.
A key parameter in the CBR method is the number of eigenstates (Neigen) used in the simulation.
The lesser the eigenstates, the faster the simulation and the lesser accurate are the results. It has
been demonstrated that the needed percentage of eigenstates for a given acceptable accuracy
(less than 5% in the terminal current) is bias dependent, and can vary from 6% in the on-state to
40% in the off-state [18]. For this reason, Neigen was decreased gradually from 40% at
VGS 5 0.0V to 6% at VGS 5 0.7V.

Figure 6 depicts the self-consistent error versus time for the traditional NEGF, the RGF
algorithm and the GE method, whereas Figure 7 depicts it for the CBR method. A solution is
found when the error drops below 1mV. Once this criterion is met, the terminal current is
calculated and a new bias point is initiated. This causes the error to jump to a larger value, and
the error starts decreasing again with iterations until the solution of the new bias point is found.
The cycle was repeated until the eight bias points were completed. The simulation time differs
considerably from one method to another. The traditional NEGF with full matrix inversion has
the greatest simulation time, whereas the CBR method has the smallest one. A summary of the
total simulation time (ttotal), average simulation time per bias point (tbias), and the average
simulation time per iteration (titeration) is presented in Table II. These simulations were carried
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Figure 6. The self-consistent error versus time using the traditional NEGF, the RGF algorithm and the
GE method.
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out on a home PC: Intels Pentium 4 CPU 2.4GHz, 768MB RAM. The RGF algorithm or the
GE method introduces about one order of magnitude reduction in simulation time below that
traditional NEGF. The CBR method yields the smallest simulation time with about two orders
of magnitude reduction. By such a great reduction in the simulation time, the CBR method
makes it practical to simulate and design DG MOSFETs using the RS simulations. The main
disadvantage of the CBR method is the necessity to dynamically determine the number of
eigenstates to achieve the desired accuracy [18, 19]. This is not necessary in either the RGF
algorithm or the GE method.

5. CONCLUSIONS

The traditional NEGF, the RGF algorithm, the CBR method, and the GE method were
successfully implemented in the DG MOSFETs simulator FETMOSS. The new version of
FETMOSS was benchmarked using the online available simulator NanoMOS 3.0. The existence
of the mentioned methods inside the same simulator enables their simulation time comparison
by using them to simulate the same DG MOSFET device on the same machine. The results
showed that the CBR method is the most computationally efficient one with about two order of
magnitude reduction in time with respect to the traditional NEGF. The RGF algorithm is a
little bit faster than the GE method and both of them give about one order of magnitude only of
simulation time reduction. From these results, one expects that the CBR method will make it
practical to simulate and design true 2D and may be 3D devices on a home PC, in single-band
case. For multi-band structure simulation, the CBR method may be comparable in speed to the
other methods and the relative ranking of the methods is needed to be studied in the future.
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Figure 7. The self-consistent error versus time using the CBR method.

Table II. The simulation time comparison summary.

Method ttotal (h) tbias (h) titeration (h)

Traditional NEGF 75.7218 9.4652 1.2022
The GE method 11.6525 1.4566 0.1850
The RGF algorithm 5.0872 0.6359 0.0807
The CBR method 0.8661 0.1108 0.0135

These simulations were carried out on a home PC: Intels Pentium 4 CPU 2.4GHz, 768MB RAM.
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